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Summary

• Address the problem of physical parameter identifiability by
avoiding discrepancy terms
• Account for model discrepancy via power likelihood,

πw(θ | y) ∝ [ f (y | θ)]wπ(θ)

• Use preposterior generalized cross-validation (GCV) to
select w by credible interval quantile matching
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Problem set-up

(Brown and Hund, 2018)

Consider a dynamic materials experiment

• Apply a boundary condition to a system
• Measure a functional output
• Calibrate model input parameters

Here we study the compressibility properties of tantalum (73Ta)
by applying to it a dynamic magnetic field
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The data and parameters

For experiments j = 1, . . . , 9,

• y(xij): Observed time-velocity functional response
resulting from impulse
• η(xij; θ): Output of wave code simulator to model velocity
• θ: Calibration parameters for the simulator

4



Introduction Existing approaches Power likelihood Toy example Our method Results Conclusion

The data and parameters
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The data and parameters

The dark blue line is the observed y(x)

Other lines represent model output η(x; θ) for different θ
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Applications of BMC

• Prediction (interpolation or extrapolation)
• Assess level of misspecification in computer models
• Physical parameter estimation
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Inferential goal

Inverse problem: back out θ = (α, γ) calibration parameters
using observed data

• α = (B0, B′0) are parameters of interest, bulk modulus B0
and its pressure derivative B′0
• γ = (ρ0, xAl, xTa, BCscale) are nuisance parameters

given that η(xij, θ) cannot perfectly describe y(xij)

Only B0, B′0, and ρ0 are common to all experiments j
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GP discrepancy term

Kennedy and O’Hagan (2002) [KOH]

y(xij) = η(xij; θ) + δ(xij) + ε(xij)

• GP discrepancy with squared-exponential kernel

δ(xj) ∼ N (0, Σδ
j )

Σδ
j [i, i′] = τ2

1 exp
[
− 1

2τ2
2
(xi′ j − xij)

2
]

• Observation error, for known Σε
j = diag({σ2

ij}n
i=1)

ε(xj) ∼ N (0, Σε
j )

• Specifying prior π(θ) leads to posterior
π(θ|yj) ∝ f (yj|θ)π(θ) using MVN likelihood
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GP discrepancy term

• Requires O(n3) computation for covariance matrix
inversion
• Has potential for numerical instability
• Difficult or impossible to jointly identify θ and δ(x)

I Exception if we have strong prior information on δ(x)
(Brynjarsdóttir and O’Hagan, 2014)
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Scaling likelihood by effective sample size

Brown and Hund (2018)

Drop the discrepancy term, so now the model is

y(xij) | θ, φj
iid∼ N (η(xij; θ), φj)

π(θ, φj) ∝ π(θ) · φ−1
j ,

and the sampling model is known to be misspecified.
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Scaling by effective sample size

Issues:
• Model misspecification manifested through

autocorrelation of residuals
• Because of functional nature of output, n may be chosen to

be arbitrarily large

Solution: scale likelihood effective sample size (ESS), nej via

π(θ|yj) ∝

[
n

∏
i=1

f (yij|θ, φj)

]nej/n

π(θ),

calculated from autocorrelation of residuals τj by nej/n = 1/τj.
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On finding the ESS

1) Find MLE θ̂ = arg minθ ‖η(xj; θ)− y(xj)‖2

2) Calculate resulting empirical discrepancy
δ̂(xj) = y(xj)− η(xj; θ̂)

3) Calculate autocorrelation τ̂j from δ̂(xj)

4) n̂ej = n/τ̂j

Uses concept of “information gain,” similar to Holmes and
Walker (2017) and Lyddon, Holmes, and Walker (2017).

This approach is used to retain correct variance in posterior
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Generalized Bayesian posterior

Traditional Bayesian inference relies on the concept of
well-specified models, which may be difficult, impossible, or
inconvenient.

Much recent work has been conducted on power-likelihood
methods, yielding the generalized Bayesian posterior,
for 0 ≤ w ≤ 1,

πw(θ | y) =
[ f (y | θ)]wπ(θ)∫
[ f (y | θ)]wπ(θ)dθ

Previously, Brown and Hund (2018) used w = nej/n
How else can we find w?
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Power likelihood

Bissiri, Holmes, and Walker (2016) use a loss function l(θ, x) to
connect observations x with parameters θ

They argue via a decision theory approach that “a valid and
coherent update” to π(θ) exists in the posterior of the form

πw(θ | y) ∝ exp(−wl(θ, x))π(θ).
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Power likelihood

πw(θ | y) ∝ [ f (y | θ)]wπ(θ)

• Miller and Dunson (2018) determin w by assigning a prior
to the KL-divergence between the “idealized data” X1:n
under the misspecified model and the observed data x1:n,
dn(X1:n, x1:n)

• Grünwald and van Ommen (2017) select w to minimize
posterior expected log-loss using a leave-one-out
cross-validation method
• Syring and Martin (2018) use coverage based on bootstrap

resampling to tune credible intervals to have nominal
frequentist coverage rates
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Power likelihood

Main idea of our method:

Let Cw,α(y) represent an equal-tailed 1− α-level posterior
credible interval for θ coming from πw(θ | y) ∝ [ f (y | θ)]wπ(θ).

Select the power to be w?, such that

Pr(θ ∈ Cw?,α(y)) = 1− α
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Toy example

Prior:
θ ∼ N (0, 1)

Sampling model:
(yi | θ) ∼ N (θ, 1)

Reality:
(yi | θ) ∼ SN (ξ = θ, ω = 1, α = 1/2),

i.e. the skewed-normal with location θ, scale 1, and shape 1/2
(mean ≈ 0.353, sd ≈ 0.933)
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Toy example
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Toy example

Take a sample yi ∼ N (θ, 1) of size N = 25

Generalized posterior:

πw(θ | y) ∝
n

∏
i=1

[N (y; θ, 1)]wπ(θ)

Question: how much do we need to discount the likelihood (i.e.
what to set w) to achieve nominal frequentist coverage of
posterior credible intervals?
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Toy example

For k = 1, . . . , K

• Generate θk ∼ N (0, 1) for
• For each k, generate yki ∼ SN (θk, 1, 1/2), i = 1, . . . , N
• For each w on some grid, draw samples from πw(θ | y),

using misspecified normal likelihood
• Check whether a 90% credible interval covers θ

Get a Monte Carlo estimate of coverage probability for each w
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Toy example

Consider these cases:
• w = 0⇒ πw(θ | y) = π(θ), (no update)⇒ trivially have

nominal coverage rate
• Small positive w⇒ close to prior but favoring observed

mean⇒ coverage rate too high
• w = 1⇒ πw(θ | y) concentrates on (biased) empirical

mean⇒ low coverage
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Toy example
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Toy example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.4

0.8

1.2

1.6

0.01 0.10 1.00

w (likelihood scaling)

M
S

E

w*

N = 25, α = 0. 5000
MSE for theta, toy example

24



Introduction Existing approaches Power likelihood Toy example Our method Results Conclusion

Toy example
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Generalized cross-validation

Key idea: choose w such that we believe the credible intervals
to have nominal frequentist coverage.
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Preposterior analysis

Preliminaries: empirical estimate of discrepancy

• Find MLE of θ,

θ̂ = arg min
θ
‖y(xj)− η(xj; θ)‖2

• Find MLE hyperparameters τ̂2
1 and τ̂2

2 for resulting
empirical discrepancy,

δ̂(xj) = y(xj)− η(xj; θ̂)

These estimates will generally be different for each experiment
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Preposterior analysis

Pseudodata generation:

• Generate θ̃ ∼ π(θ̃), calculate pseudotruth η(x; θ̃)

• Generate pseudodiscrepancy 1

δ̃(x) ∼ N (0, Σ̂δ),

with Σ̂δ from estimated GP hyperparameters τ̂2
1 and τ̂2

2

• Calculate pseudoexperimental data,

ỹ(x) = η(x; θ̃) + δ̃(x)

Similar to Arendt et al. (2016), who use priors for GP
parameters instead of estimating them

1NB: Hats .̂ represent estimates, tildes .̃ represent simulated data
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Preposterior analysis

For one value of w,

(i) Generate pseudodata ỹ(x) for one θ̃ ∼ π(θ̃)

(ii) Sample from GBP πw(θ|ỹ)
(iii) Check for coverage of θ̃ in the credible interval Cw,α(ỹ)

using draws from GBP
(iv) Repeat for many θ̃ ∼ π(θ̃)

This yields Monte Carlo estimates of frequentist coverage
probabilities

Repeat this procedure along a grid of w
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Preposterior analysis

We can also consider other cross-validation metrics

• MSE of estimating θ

• MSE of estimating η(x; θ̃)

• Posterior predictive coverage of ỹ(x)
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Preposterior analysis

Importantly, discrepancy function used in selecting w, but
otherwise not included in the posterior for θ (avoid identifiability
issue)
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Example: one pseudo dataset
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Example: one pseudo dataset
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Example: one pseudo dataset

1000

2000

3000

0 25 50 75 100
Time

V
el

oc
ity Pseudo−

experimental
data

Pseudo−
true velocity

Simulated truth and observation at new θ

34



Introduction Existing approaches Power likelihood Toy example Our method Results Conclusion

Example: one pseudo dataset
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Example: one pseudo dataset
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Example: one pseudo dataset
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Results on one experiment

• 100 instantiations of θ̃ ∼ π(θ̃)

• Evaluate coverage estimate on a grid of w on a log-scale
• Compare optimal w? to scaling factor chosen by Brown

and Hund (2018)
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Results on one experiment
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Results

Is there general agreement with Brown and Hund (2018)?
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Results

Experiment 2 Experiment 6
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Results for another experiment
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Other considerations

We can consider other ways of generating δ̃, and generating θ̃
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Open questions

• Can we show that a solution w? exists?
• Does w? selected with this method scale with n?
• Show agreement with Brown and Hund (2018)?
• Can we extend this to predictive interval evaluation?
• What about extrapolation to other settings?
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Conclusion

Email: spencer.woody@utexas.edu
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