
Bayes-optimal post-selection inference in
spatial modeling

Spencer Woody? James Scott

Department of Statistics and Data Sciences
University of Texas at Austin

28 June 2018



Motivation Framework Selection-adjusted inference Spatial saFAB procedure Simulations Conclusion

−3

0

3

6

0 25 50 75 100
coordinate

y

ROIs threshold Signal

Detecting regions of interest

2



Motivation Framework Selection-adjusted inference Spatial saFAB procedure Simulations Conclusion

Example: Differentially methylated regions

Figure: From Benjamini et al. (2016)
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Other examples

• “Bump hunting” in high-energy physics problems to find
energy regions of high event activity
• Detecting regions of neural activity in fMRI scans
• Finding environmental contamination areas
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Our method

Spatial selection-adjusted FAB intervals
• Correctly adjusts for selection
• Retains nominal coverage across the parameter space
• Incorporates hierarchical modeling for “information

borrowing”
• Bayes-optimal w.r.t. expected length of intervals
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Set up

Observe a vector y associated with a graph G = (V , E) with a
latent spatial signal θ,

(yv|θv) ∼ N (θv, σ2), v ∈ V
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Detecting regions of interest (ROIs)

Denote an ROI as R, found following a three-step process:

(i) Smooth the noisy observations (optional), e.g. with a linear
smoother,

ỹ :=Hy.

(ii) Threshold the smoothed observations at some value t.
(iii) Merge together contiguous regions where smoothed

observations fall above the threshold. With a chain graph,

R = (a, a + 1, . . . , b− 1, b) s.t. ỹi > t ∀ i ∈ R

Key fact: Restrict inference to R conditioned on

ỹR > t⇔ HRy > t
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Target of inference
After detecting a region R, the goal is to provide inference for

θ̄R :=
1
|R| ∑i∈R

θi,

i.e. the mean signal for the ROI. The näıve estimate ȳR will be
biased upwards.

10



Motivation Framework Selection-adjusted inference Spatial saFAB procedure Simulations Conclusion

Selection-adjusted inference

Appropriate inference must condition on the selection event.
The selection-adjusted likelihood is

fS(y | θ) =
f (y | θ) · 1(y ∈ S)∫

y∈S f (y | θ)dy
,

or equivalently, the likelihood truncated to the selection event S.

See, e.g.,
• Yekutieli (2012), selection-adjusted Bayesian inference
• Fithian, Sun & Taylor (2014), selective frequentist

performance
In our case,

fS(y | θ) =
N (y | θ, σ2I) · 1(HRy > t)∫

HRy>tN (y | θ, σ2I)dy
.
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Bayesian inference

We use the centered ICAR prior for θ,

π(θ) ∝ exp

[
− 1

2τ2 ∑
(v,w)∈E

(θv − θw)
2

]
· exp

[
− 1

2λ2 θ̄2
]

,

where θ̄ is the mean of the components of θ.

The sampling model is

(yv | θv) ∼ N (θv, σ2), v ∈ V

for the graph G = (V , E).
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Selection-adjusted confidence interval

Construct hypothesis tests around the the sampling distribution
for the statistic fS(ȳR|θ̄R). See Benjamini et al. (2016).

For FS(ȳR; θ̄R) the CDF for ȳR ∼ fS(ȳR; θ̄R), the acceptance
region for the α-level uniformly most powerful (UMP) test of
H0 : θ̄R = θ0 is

A(θ0) = {ȳR : F−1
S (α/2; θ0) ≤ ȳR ≤ F−1

S (1− α/2; θ0)}
= {ȳR : L(θ0) ≤ ȳR ≤ U(θ0)}.

Inversion yields the 1− α-level universally most accurate
unbiased (UMAU) confidence interval for θ̄R,

C(ȳR) = {θ̄R : ȳR ∈ A(θ̄R)}.
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Background: FAB procedure

In general, inversion of

Aw(θ0) = {y : F−1(αw; θ0) ≤ ȳ ≤ F−1(αw + 1− α; θ0)}
= {y : Lw(θ0) ≤ y ≤ Uw(θ0)}

for any 0 ≤ w ≤ 1 will yield a confidence interval procedure

Cw(y) = {θ : y ∈ Aw(θ)}

which retains nominal coverage for θ.
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FAB procedure

Frequentist assisted by Bayes (FAB) procedure

• Key idea from Pratt (1963)
• Extended by Yu and Hoff (2018) for confidence intervals for

group-level means

Goal: Find w(θ) which minimizes the expected size of the
confidence set under a prior π(θ).

Define the risk of a confidence interval procedure to be its
expected Lebesgue measure,

L(θ, w) =
∫ ∫

1(y ∈ Aw(θ̃))f (y|θ)dθ̃dy.
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FAB procedure

Introduce a prior θ ∼ π(θ). Then the Bayes risk for the
confidence interval procedure is

L(π, w(θ)) =
∫

L(θ, w(θ))π(θ)dθ

=
∫ [∫ ∫

1(y ∈ Aw(θ̃))f (y|θ)dθ̃dy
]

π(θ)dθ

=
∫ [∫ ∫

1(y ∈ Aw(θ̃))f (y|θ)π(θ)dydθ

]
dθ̃

=
∫

Pr(Y ∈ Aw(θ̃))dθ̃.
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FAB procedure

Let M(y) be the CDF for the marginal distribution
m(y) =

∫
f (y|θ)π(θ).

The Bayes-optimal interval is found by choosing w(θ) to
minimize the objective function

Pr(Y ∈ A(θ)) = M(Uw(θ))−M(Lw(θ))

= M
[
F−1(αw + 1− α; θ)

]
−M

[
F−1(αw; θ)

]
.
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Spatial selection-adjusted FAB procedure

(i) Specify the truncated likelihood fS(ȳR; θ̄R) and spatial prior
π(θ)

(ii) Construct the spending function by solving

w(θ̄R) = arg min
w

MS

[
F−1

S (αw + 1− α; θ̄R)
]
−MS

[
F−1

S (αw; θ̄R)
]

(iii) Invert the family of tests specifed by w(θ̄R) and fS(ȳR; θ̄R),

Aw(θ̄R) = {y : F−1
S (αw(θ̄R); θ̄R) ≤ y ≤ F−1

S (αw(θ̄R) + 1− α; θ̄R)}.

Use this to give Bayes-optimal selection-adjusted confidence
regions for θ̄R which retain coverage for entire parameter space.

23



Motivation Framework Selection-adjusted inference Spatial saFAB procedure Simulations Conclusion

Simulation study

50,000 simulations performed as follows:
• Chain graph of length 500
• θ generated from ICAR prior with τ2 = 0.25 and λ2 = 1
• (y|θ) ∼ N (θ, I)
• Threshold for detecting ROIs set to t = 2
• No smoothing step involved (H = I )

FS(ȳR | θ̄R) and MS(ȳR) are approximated via Monte Carlo.
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The spending function
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Conclusion

Slides:
spencerwoody.github.io/talks

Email:
spencer.woody@utexas.edu
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