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Introduction

Let Z be the sample space for the treatment assigment Z.

• Most of our course has only considered binary treatments.

Z ∈ Z = {0, 1}

Causal estimands are comparisons of counterfactual
outcomes Yi(Zi = 1) vs Yi(Zi = 0)

• Now we consider nonbinary treatments

I Categorical (possibly ordinal): Z = {1, 2, . . . , k},
e.g. multiple treatment arms

I Continuous: Z ⊆ R, e.g. drug dose
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Causal estimands in the Rubin Causal Model

Categorical treatment with k categories:

• There are
(

k
2

)
pairwise comparisons of treatment assignment

Yi(Zi = j) vs. Yi(Zi = j′) for j, j′ ∈ {1, 2, . . . , k}

Continuous treatment:

• Finite difference comparison

Yi(Zi = z) vs. Yi(Zi = z′) for z , z′

• Average dose-response function

µ(z) = E[Yi(z)]
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Generalized propensity score

Let X be the vector of observed covariates.

Definition: Generalized propensity score* (GPS)

Let r(z, x) be the conditional density (or mass function) of the
treatment given the covariates:

r(z, x) = fZ|X(z | x)

The generalized propensity score is R = r(Z, X).

Note that R may be a vector, e.g. if Z is categorical.

*Imbens (2000); Hirano and Imbens (2004)
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Overlap

Assumption: Overlap

r(z, x) = fZ|X(z | x) > 0 ∀z ∈ Z
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Generalized propensity score

Assumption: Weak unconfoundedness

Y(z) ⊥⊥ Z | X for all z ∈ Z

Note: this does not require joint independence of all potential outcomes {Y(z)}z∈Z

Similar to Rosenbaum and Rubin (1983) for the case of binary Z,
Imbens (2000) and Hirano and Imbens (2004) demonstrate:

Theorem: Weak unconfoundedness given the GPS

If weak unconfoundedness holds given X, then, for every z,

fZ(z | r(z, X),Y(z)) = fZ(z | r(z, X)).
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Existing methods mostly rely on GPS

• Imai and van Dyk (2004): Subclassify on GPS, then take
average over subclasses

• Hirano and Imbens (2004): Parametric model for Y | Z,R, then
marginalize over R

• Robins et al. (2000): IPTW estimator using GPS

Disadvantage: These methods rely on parametric assumptions

Work on matching for nonbinary treatments is relatively new
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Outline

Presenting methodologies from three papers:

(i) Nattino et al. (2020): Compare treatment effects across 3
treatment arms (categorical)

(ii) Sävje et al. (2017): Generalized full matching for multiple
treatment categories (categorical)

(iii) Wu et al. (2020): Use matching to estimate average
dose-response (continuous)
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Introduction Nattino et al. (2020) Sävje et al. (2017) Wu et al. (2020) Conclusion

Nattino et al. (2020)
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Nattino et al. (2020)

Goal: Compare effectiveness of trauma centers as measured by
emergency department mortality, for three classes of trauma cen-
ter,

• level 1 trauma center (TC I)

• level 2 trauma center (TC II)

• nontrauma center (NTC)

Counterfactual of interest: “. . . the key research question is whether TC II is

a justified investment of limited trauma care resources. If trauma patients treated

at TC II had, instead, been treated at TC I or NTC, would their outcomes have

been different?” – p. 1
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Assumptions

Let Y (z)
`

for z ∈ {1, 2, 3} denote the counterfactual outcome (1 for
death, 0 for survival) for unit ` = 1, . . . ,N.

The observed value is Y` = Yobs
`

=
∑3

z=1 I(Z` = z)Y (z)
`

X` is a vector of pre-treatment covariates

1. SUTVA: no interference between units, no multiple versions of
same treatment

2. Positivity

0 < Pr(Z` = z | Y (1)
`
,Y (2)

`
,Y (3)

`
,X`) < 1 ∀z ∈ {1, 2, 3}

3. Strong ignorability

Z` ⊥⊥ Y (1)
`
,Y (2)

`
,Y (3)

`
| X`
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Three-way matching

Idea: replicate conventional block randomization design, using triplets
of units containing all treatment assigments z = 1, 2, 3

Let I, J , and K denote the sets of indices of subjects in subject.
We will create S = min{n1, n2, n3} matched triplets. Will match on
variables V (either covariates X or the GPS).

• Define a distance metric d3(i, j, k), i ∈ I, j ∈ J , k ∈ K as a
function of Vi, V j and Vk, with additivity property

d3(i, j, k) = d2(i, j) + d2(i, k) + d2( j, k)

• Denote set of possible matches asM = {i, ji, ki}i∈I, where the
units ji and ki are matched to units i

• Goal is to findM to minimize D(M) =
∑

i∈I d3(i, ji, ki)
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Triplet matching algorithm

Rough outline:

(i) Select two treatment groups arbitrarily, and optimally match
them into pairs

(ii) Optimally match units in the third treatment group to each of
the pairs from step (i) (keeping previous pairs fixed)

(iii) Switch the two fixed treatment groups, and then optimally
match units from the third treatment group

(iv) Iterate through step (iii) until total distance cannot be
decreased further

This method produces sets of matched triplets, but each step only
requires two-way matching
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Inference on mortality differences

Denote treatment and outcome vectors for triplet s = 1, . . . , S as
Zs = {Zs1,Zs2,Zs3} and Ys = {Ys1,Ys2,Ys3}

• Fisher’s sharp null hypothesis of no effect at all:
H0 = Y (1)

sr = Y (2)
sr = Y (3)

sr for subject r = 1, 2, 3.

• Consider two comparisons:

(1) NTC vs TC overall (z = 1 vs z = 1, 2 combined)

(2) TC II vs TC I (z = 2 vs z = 3)

Use Fisher randomization based inference
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Comparing NTC vs TC overall

• Mantel-Haenszel test statistic is no. of events in NTC

S∑
s=1

3∑
r=1

I(Zsr = 1)Ysr

• Under null hypothesis, each subject is equally likely to be the
patient assigned to NTC within each triplet.
Conditioning on ms =

∑3
r=1 Ysr, define ps as

ps = Pr(
∑3

r=1 I(Zsr = 1)Ysr = 1 |
∑3

r=1 = ms).
ps = 0, 1/3, 2/3, 1 for ms = 0, 1, 2, 3

• The standardized statistic is

TMH =

∑S
s=1

∑3
r=1 I(Zsr = 1)Ysr −

∑S
s=1 ps√∑S

s=1 ps(1 − ps)

Under the null hypothesis, TMH ∼ N(0, 1) as S → ∞
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Introduction Nattino et al. (2020) Sävje et al. (2017) Wu et al. (2020) Conclusion

Comparing TC I vs TC II overall

• McNemar test statistic is no. of events in TC II

S∑
s=1

3∑
r=1

I(Zsr = 3)Ysr

• Under null hypothesis, each subject is equally likely to be the
patient assigned to NTC within each triplet.
Conditioning on ns =

∑
r∈{2,3} Ysr, define qs as

qs = Pr(
∑3

r=1 I(Zsr = 3)Ysr = 1 |
∑

r∈{2,3} = ns).
qs = 0, 1/2, 1 for ns = 0, 1, 2

• The standardized statistic is

TMH =

∑S
s=1

∑3
r=1 I(Zsr = 1)Ysr −

∑S
s=1 qs√∑S

s=1 qs(1 − qs)

Under the null hypothesis, TMN ∼ N(0, 1) as S → ∞
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Results on trauma center mortality data

• Estimate GPS using multinomial regression

• Match subjects on the basis of the linear predictor of GPS
(log-odds)

• Results in 3158 matched triplets
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Results: covariate balance after matching
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Results: Comparisons between trauma centers

• NTC vs TC (TC I and TC II combined): TMH = 11.45,
p < 0.001

• TC I vs TC II: TMN = 0, p = 0.500

• Assess sensitivity to unobserved confounding (Rosenbaum,
1987) gives ΓMH = 2.34.
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Sävje et al. (2017)
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Sävje et al (2017)

• Hypothesis: social norms influence citizens’ propensity to
vote (Gerber, Green, and Larimer, 2008).

• Goal: study effectiveness of a postcard intervention in
increasing voter turnout. There are six total treatment
conditions.

• Introduce generalized full matching, which extends full
matching to the case of categorical treatment with k levels.

Gerber et al. prescreened voters to be included in the study, so the
original results were not generalizeable to the entire population.
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Introduction Nattino et al. (2020) Sävje et al. (2017) Wu et al. (2020) Conclusion

Full matching

This paper generalizes full matching†:

• Construct groups of units that are as homogeneous as
possible

• Require that each group has at least one unit of each
treatment condition

• So far, only developed for case of binary treatment

All units are matched to a subclass, hence the term “full”

†Rosenbaum (1991); Hansen (2004); Stuart and Green (2008)
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Notation

• Denote the sample of n units by U = {1, 2, . . . , n}

• Unit i is assigned to treatment condition Wi ∈ {1, 2, . . . , k}

• The vectors wx = {i : Wi = x} denote sets of units assigned to
a given treatment condition

• Matched groups are denoted by m, and the union of matched
groups is M = {w1,w2, . . .}

• Define an objective function L :M→ R, whereM is the set
of possible matches
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Match group constraints

Constrain the set of admissible matchesM as follows:

• Each match group m must contain cx no. of units with
treatment condition x

• Each match group must contain at least t ≥
∑k

x=1 cx no. of
units overall

• Union of match groups must contain all units, M =
⋃

m = U
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Algorithm

. . .
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Graphical example
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Properties

Let Malg be the set of matches resulting from the algorithm

Theorem: Sävje et al. (2019)

L(Malg) ≤ min
M∈M

4L(M)
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Covariate balance

Construct matched groups based on Mahalonobis distance
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Results on voter turnout data (1)

The figures [in the second row] should be interpreted as estimates of turnout of
the six conditions if scaled up to the whole population

Control and non-experiment groups should be more similar....

29
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Results on voter turnout data (2)

Now restrict to units that voted in 2004 election. . .
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Differences between Nattino et al. and Sävje et al.

• Nattio et al.

I Attempt to mimic block randomization design

I Adapts existing matched pair algorithm

I Fisher randomization paradigm

I Frequentist test and confidence intervals are standard

• Sävje et al.

I Less conventional experimental design→ more researcher
degrees of freedom (how to set cx?)

I Novel algorithm which generalizes full matching

I Direct comparison of average outcomes

I Quantifying uncertainty appears difficult, and is not attempted
by the authors
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Wu et al. (2020)
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Wu et al. (2020)

• Goal: Study effect of long-term PM2.5 exposure on mortality
rates

• Estimand: E[Y(w)], where Y is mortality rate per 100
Medicare enrollees, and w is PM2.5 exposure in µg/m3
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Local weak unconfoundedness

Treatment W j and covariates C j

Assumption: Local weak unconfoundedness (Imbens, 2000)

W j ⊥⊥ Y j(w) | C j for all w ∈ W

Note: does not require joint independence of all potential outcomes {Y j(w)}w∈W

Define the indicator variable I j(w̃) = 1 if W j = w̃ and 0 otherwise.

Assumption: Local weak unconfoundedness (Wu et al.)

{I j(w̃)}w̃∈[w−δ,w+δ] ⊥⊥ Y j(w) | C j for all z ∈ Z

Note: this does not require joint independence of all potential outcomes {Y(z)}z∈Z

That is, the assignment is unconfounded within a neighborhood of
w (not all w ∈ W)

Here δ is called the caliper.
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Matching with continuous treatments

• Define a grid of values for w

• Idea: Match on both w and the estimated GPS e, i.e. the
objective function for matching is

m(e j,w) = arg min
k:wk∈[w−δ,w+δ]

‖λ · [e?(wk, ck) − e?j ] + (1 − λ) · [w?
k − w?

j ]‖

• The counterfactual outcome for unit j at level treatment level
w is imputed as Ŷ j(w) = Yobs

m(e(w,c j),w), i.e., impute it from the unit
close to w (not w j) and close in propensity score for unit j, e j

• Must select tuning parameters λ and δ

• Take average within each level of w, then use a kernel
smoother to estimate the dose-response curve
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Results on PM2.5 mortality data
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Results on PM2.5 mortality data

Confidence bands
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Open questions from Wu et al.

• Is the bootstrap a valid way to represent uncertainty?

• This method cannot estimate heterogeneous effects (e.g.,
subgroups of the population)
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Conclusion

Slides at spencerwoody.github.io/talks
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