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Inference after selection and model fitting

• Common problem: using the same data to answer multiple
questions can induce bias

• Part 1: Use data twice, (i) to select targets of inference, then
(ii) form estimates for these targets

• Part 2: Fit a model, and then interpret the model through
post-hoc exploration [data used once]
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Overview

I. Bayes-optimal post-selection inference: selection-adjusted
frequentist assisted by Bayes (saFAB)¶

II. Model interpretation through posterior summarization||

III. Inference for treatment effects under nested subsets of control
variables||

IV. Estimating and interpreting heterogeneous effects of
continuous treatments using a new BART-based model||

¶Joint work with Prof. James Scott and Prof. Oscar Madrid Padilla (UCLA)
||Joint work with Profs. Carlos Carvalho and Jared Murray
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Bayes-optimal post-selection inference

Sparse signal detection:

• (yi | θi) ∼ N(θi, σ
2)

• Most θi are zero or very small

Goal: Quantify uncertainty for the “interesting” θi once we’ve found
them, while adjusting for selection.
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saFAB

We present a method which:

(1) Gives confidence intervals which correctly adjust for selection

(2) Intervals are as short as possible on average while also
having uniform coverage (borrowing from Yu and Hoff, 2018)

(3) Estimates the prior when it is unknown and gives a
consistent estimate of the optimal procedure

• Update: new consistency result for nonparametric empirical
Bayes procedure

• New version currently under revision for publication in
Biometrika
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Posterior summarization
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Introduction

Consider a generic regression model:

yi = f (xi) + εi, εi ∼ N(0, σ2)

Suppose we want to accomplish two tasks at once:

1. Estimate f as realistically as possible, and

2. Understand important trends within the data, e.g.

I Which covariates have strongest effect on prediction?

I Does covariate importance differ across the covariate space?

I Are there important interactions?
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Motivating example: Housing prices in California

Outcome: yi is census
tract-level median house
values in California (log)

Predictors:

• log-median household
income

• log-population

• median no. of rooms
per unit

• longitude

• latitude

n = 7481, p = 5

35.0

37.5

40.0

−124 −122 −120 −118 −116

10 11 12 13
Median house value (log)
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Interpretability vs. flexibility

There is a natural tension between fitting...

• Flexible, more realistic, but “black box” models

I Gaussian process

I Tree ensembles

• Simple, interpretable, but (presumably) misspecified models

I yi = β0 +
∑p

j=1 β jxi j + εi

I yi = β0 +
∑p

j=1 g j(xi j) + εi
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Interpretability vs. flexibility

• Simple models are not believed to be “true” but are rather the
best linear/additive approximation to the regression surface

• Detecting important trends might involve fitting several models

M1 : y = β11x1 + β12x2 + . . . + ε

M2 : y = β12x1 + β22x2 + β23x1x2 + . . . + ε

M3 : y = β31x1 + β32x2 + β33x2
1 + . . . + ε, etc.

and selecting one for interpretation

• Should worry about model refinement + posterior inference
after using the data multiple times (“posterior hacking”)
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Separating modeling and interpretation

We propose a two-stage processvii:

I. Specify a flexible prior for f and use all available data to best
estimate it

II. Perform a post hoc investigation of the fitted model using
lower-dimensional surrogates as summaries which. . .

I propagate posterior uncertainty

I are suited to answer relevant inferential questions, and

I sufficiently represent the model’s predictions

viiWoody, Carvalho, and Murray (2020), recently accepted at JCGS
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Motivating example: GP model for housing prices

Model CA census-tract housing prices with a Gaussian process re-
gression model:

(yi | f , σ2) = f (xi) + εi, εi ∼ N(0, σ2)

f ∼ GP(0, k(·, ·)), p(σ2) ∝ σ−2
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Motivating example: GP model for housing prices

1. Global summaries
Average predictive trends across whole dataset,
where we project f (x) onto simpler interpretable structures. . .

(i) Linear summary

γ(x) = β0 +

p∑
j=1

β jx j + εi

(ii) Additive summary

γ(x) = β0 +

p∑
j=1

h j(x j) + εi

(iii) (Mostly) additive summary, allowing for some interactions

γ(x) = α + hkl(xk, xl) +
∑
j<{k,l}

h j(x j),

2. Local linear summaries (in paper and supplemental slides)

Covariate importance within geographic regions
15
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Key point

• The data are used only once (in finding posterior for f )

• Therefore, we retain valid Bayesian inference even after fitting
several summaries
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Model interpretation through posterior summarization
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Posterior summaries

• Define a class of summaries Γ (e.g. linear, additive)

• User-defined summary loss function

L( f , γ, X̃) = d( f , γ, X̃) + pλ(γ)

I d(·, ·, X̃) measures predictive difference between f and γ
(e.g. squared difference)

I X̃ are covariate locations of interest

I pλ(·) penalizes complexity in γ (enforces sparsity/smoothness)
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Posterior summaries

• Define a class of summaries Γ (e.g. linear, additive)

• User-defined summary loss function

L( f , γ, X̃) = d( f , γ, X̃) + pλ(γ)

• The model summary is a functional of f minimizing this loss

γ(x) = arg min
γ′∈Γ
L( f , γ′, X̃)

Projected posterior generated using posterior draws of f :

γ[k](x) = arg min
γ′∈Γ
L( f [k], γ′, X̃), f [k] ∼ p( f | y)
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Point estimate for the summary

• Standard Bayesian decision theory dictates that the optimal
point estimate is

γ̂(x) = arg min
γ′∈Γ

E[L( f , γ′, X̃) | Y, X]

= arg min
γ′∈Γ

E[d( f , γ′, X̃) | Y, X] + pλ(γ′)

• When d(·, ·, X̃) is squared-error loss, this becomes

γ̂(x) = arg min
γ′∈Γ

ñ∑
i=1

[
f̂ (x̃i) − γ′(x̃i)

]2
+ pλ(γ)

“Fitting the fit” with posterior mean fitted values f̂ (x̃i).
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Application to California housing data
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Global additive summary for GP model

• Summary: Best additive approximation to the model

Γ =

γ : γ(x) = α +

p∑
j=1

h j(x j)


• The optimal point estimate for the summary is:viii

γ̂(x) = arg min
γ′∈Γ

n∑
i=1

[
f̂ (xi) − γ′(xi)

]2
+

p∑
j=1

λ j · J(h j)

• The projected posterior is found with

γ[k](x) = arg min
γ′∈Γ

n∑
i=1

[
f [k](xi) − γ′(xi)

]2
+

p∑
j=1

λ j · J(h j)

viiiSee paper for details on computation
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Global additive summary with bands

Median_rooms POPULATION

LATITUDE LONGITUDE Median_household_income

2 4 6 8 6 8 10

32.5 35.0 37.5 40.0 −122.5 −120.0 −117.5 −115.0 10 11 12

−1

0

1

−1

0

1

hj(xj)

Using posterior draws of GP

Projected additive summary of GP fit
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Summary diagnostics

• Summary R2:

R2
γ := 1 −

∑
i[ f (x̃i) − γ(x̃i)]2∑

i[ f (x̃i) − f̄ ]2
,

with f̄ := ñ−1 ∑
i f (x̃i).

“Predictive variance explained”

• More in paper. . .
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Summary diagnostics for global additive summary
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Iterative summary search

• We can iterate through the summarization process, refining
and evaluating the summary each time

• Retain Bayesian interpretation
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Additive summary with a two-way interaction

Expand Γ to functions of the form

γ(x) = α + hkl(xk, xl) +
∑
j<{k,l}

h j(x j),

with a 2D smooth function hkl(xk, xl) for LON/LAT interaction.

Point estimates and projected posteriors calculated in analogous
way to previous summary.
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Additive summary with a two-way interaction

Median_rooms POPULATION

LATITUDE LONGITUDE Median_household_income

2 4 6 8 6 8 10

32.5 35.0 37.5 40.0 −122.5 −120.0 −117.5 −115.0 10 11 12

−1

0

1

−1

0

1

hj(xj)

Summary with LAT/LON interaction without LAT/LON interaction

Comparing summaries with and without LATITUDE/LONGITUDE interaction

Projected additive summaries of GP fit
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Additive summary with a two-way interaction

35.0

37.5

40.0

−124 −122 −120 −118 −116

−0.75
−0.50
−0.25
0.00
0.25

h(xk,xl)

Spatial trend

28



saFAB updates Posterior summarization Causal inference under nested models Moderation of continuous treatments Conclusion

Additive summary with a two-way interaction

Summary diagnostics

0

25

50

75

100

0.65 0.70 0.75 0.80

Rγ
2
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Summary Linear Additive, with
no itx

Additive, with
LAT/LON itx
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Exploring further interactions. . .
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Synthesis: global model summary

• The fitted GP regression function is approximately additive,
with an important interaction between longitude and latitude

• This summary function explains about 80% of the predictive
variance in the fitted model

• More exploration (local summaries) done in paper / extra
slides for details
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Iterative summary search

(1) Specify and fit the full model.
E[yi | xi] = f (xi), assign prior p( f ), and compute posterior.

(2) Summarize.
I Specify class of summaries Γ and points of interest X̃
I Point estimate

γ̂(x) = arg min
γ∈Γ

E[L( f , γ, X̃) | Y, X]

I Posterior around point summary using Monte Carlo draws of f

arg min
γ∈Γ
L( f , γ, X̃)

(3) Evaluate.
R2
γ, φγ, summary residuals f̂ (x̃i) − γ̂(x̃i)

(4) Refine and iterate through (2) and (3) as necessary.
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Causal inference under nested models
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Introduction

• Apply posterior summarization to causal inference

• Before: interpreting model prediction

• Now: interpreting a single parameter (treatment effect), and
how sensitive it is to model specification
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Setup

• Goal: estimate causal effect of continuous treatment /
exposure Z ∈ Z ⊆ R on some continuous outcome Y

• Use potential outcome frameworkix:

Compare Y(Z = z) vs. Y(Z = z′) for z, z′ ∈ Z

ixsee, e.g., Imbens and Rubin (2015)
35
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Identifying assumptions

(i) Consistencyx

Z = z implies Y = Y(z)

(ii) Weak unconfoundednessxi

Y(z) ⊥⊥ Z | X for all z ∈ Z

(iii) Positivityxii

π(z | x) > 0 for all z ∈ Z

xRubin (1978)
xiImbens (2000)
xiiGeneralized propensity score, Imbens (2000); Hirano and Imbens (2004)
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Case study: Abortion-crime hypothesis

• Donohue and Levitt (2001): legalization of abortion in the US
in the 1970s helped lead to a dramatic reduction of crime in
the 1980s and 1990s.

• Claim a large negative effect after controlling for
socioeconomic variables & state- and year-level fixed effects
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D&L control variables

Covariate Description

police log-police employment per capita

prison log-prisoner population per capita

gunlaw indicator variable for presence of concealed
weapons law

unemployment state unemployment rate

income state log-income per capita

poverty state poverty rate

afdc15 generosity to Aid to Families with Dependent
Children (AFDC), lagged by 15 years

beer beer consumption per capita
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Common practice: fit multiple models

Figure 1: Table IV from D&L (2001). Treatment effect estimates using
state and year dummies, with (right) and without (left) state controls.
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Sensitivity to model specification

• Subsequent studies criticized the functional form of controls

• Belloni et al. (2014) and Hahn et al. (2018) add interactions:

I state-level controls × year
I state-level controls × year2

I state dummies × year
I state dummies × year2

After adding these, they claim the causal effect disappears

• Retrospective study by Donohue and Levitt (2019) found that
their predictions from 2001 held up over the next 17 years
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Problem statement

How to reconcile inference under different model specifications with-
out using the outcome data multiple times?
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Projected posterior treatment effects

42



saFAB updates Posterior summarization Causal inference under nested models Moderation of continuous treatments Conclusion

Linear model for estimating the ATE

(Y | Z, X) = τZ + Xβ + ε, ε ∼ N(0, σ2
ε )

• Estimand: Average treatment effect (ATE):

ATEz′,z = E[Y(Z = z′) − Y(Z = z)]

= τ · (z′ − z)

• Agnostic to choice of prior; possible choices: Zigler and
Dominici (2014); Wang et al. (2015); Hahn et al. (2018)
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Reconciling inference between sets of controls

Use ideas from posterior summarization to consider inference for
treatment effects under different specifications

(I) Specify prior and obtain posterior for “full” model

(II) Project this model onto summaries of different specifications
(control variables, functional form...)

I Look how posterior for τ changes relative to uncertainty

I Gives valid posterior uncertainty
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Application to D&L data
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Application to Donahue and Levitt data

• Outcome: yst is the log murder rate in state s for year t

• Exposure: zst is the “effective abortion rate” (D&L, 2001)

I Lags and weights abortion rates from previous years

• 48 contiguous US states, years 1985–1997 (N = 624)

• Denote observations by i = 1, . . . ,N
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D&L control variables

State-level controls:

Covariate Description

police log-police employment per capita

prison log-prisoner population per capita

gunlaw indicator variable for presence of concealed
weapons law

unemployment state unemployment rate

income state log-income per capita

poverty state poverty rate

afdc15 generosity to Aid to Families with Dependent
Children (AFDC), lagged by 15 years

beer beer consumption per capita
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Model specifications

• Donohue and Levitt (2001):

I state-level controls
I state dummies
I year dummies

• Belloni et al. (2014) and Hahn et al. (2018) add interactions:

I state-level controls × year
I state-level controls × year2

I state dummies × year
I state dummies × year2
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Moderation of continuous treatments
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Methods
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Nonparametric control function

• Inference is sensitive to parametric specification (researcher
degrees of freedom)

• Solution: use a nonparametric function for controls

• Linear model from before. . .

(y | z, x) = xᵀβ + τ · z + ε

now replaced by. . .

(y | z, x) = µ(x) + τ · z + ε
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Addition: heterogeneous treatment effects

• Effect of treatment often depends on context and unit-level
qualities

• Closely related to mechanism of the treatment

• Levitt example: generous social support systems may reduce
impact of abortion on crime by enabling parents to spend
more time with their children
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Proposed semiparametric model

y = µ(xC) + τ(xM) · z + ε, ε ∼ N(0, σ2)

• µ(·) is the control function
xC is vector of the control variables

• τ(·) is the exposure moderating function
xM is a vector of moderators.

• Main parametric assumption:
y is linear in z with slope determined by τ(xM)
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Proposed semiparametric model

y = µ(xC) + τ(xM) · z + ε, ε ∼ N(0, σ2)

Before, we only estimated the average treatment effect (ATE):

ATEz′,z = E[Y(z′) − Y(z)]

The conditional average treatment effect (CATE) is:

CATEz′,z(x) = E[Y(z′) − Y(z) | X = x]

= τ(xM) · (z′ − z)
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Proposed semiparametric model

y = µ(xC) + τ(xM) · z + ε, ε ∼ N(0, σ2)

• µ(·), τ(·) modeled using Bayesian additive regression treesxiii

• Allow for interactions and nonlinearities (no need for a priori
parametric specification)

• Prior based on Hahn, Murray, and Carvalho (2020), regularize
τ(·) more heavily (shallower trees)

• Interpret effect modification via posterior summarization

xiiiChipman, George, and McCulloch (2010); review: Hill, Linero, and Murray (2020)
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Contribution

Our model. . .

(i) Does not require a priori parametric specification for controls

(ii) Identifies effect modification by pre-specified moderators

I Detecting unanticipated effect heterogeneity can generate
novel hypotheses regarding mechanism, e.g. social support

(iii) Gives interpretable summaries of effect modification using
method of posterior summarization
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Revisiting the D&L data
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The data

• Estimate impact of abortion on murder rate (same data...)

59



saFAB updates Posterior summarization Causal inference under nested models Moderation of continuous treatments Conclusion

The data

Covariate Description Used as control? Used as moderator?

police log-police employment per capita Yes No

prison log-prisoner population per capita Yes No

gunlaw indicator variable for presence of
concealed weapons law

Yes No

unemployment state unemployment rate Yes Yes

income state log-income per capita Yes Yes

poverty state poverty rate Yes Yes

afdc15 generosity to Aid to Families with De-
pendent Children (AFDC), lagged by
15 years

Yes Yes

beer beer consumption per capita Yes Yes

state categorical variable for state (con-
tiguous US states; 48 levels)

Yes Yes

year numeric value for year (1985–1997,
inclusive)

Yes Yes
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Model definition

y = µ(xC, s, t) + τ(xM, s, t) · z + ε, ε ∼ N(0, σ2)

Comparison with Donohue and Levitt (2001); Belloni et al. (2014);
Hahn et al. (2018); and others:

• Commonality: Assume linearity of y in z

• Two departures:

(i) No strict a priori parametric specification for controls

(ii) Effect heterogeneity through varying slope of treatment effect
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ATE estimates
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heterogeneous effects
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parametric (linear):
linear model
(Donahue & Levitt, 2001)

Effect of abortion on murder rate

• ATE = τ̄ = N−1 ∑N
i=1 τ(xi)

• Homogeneous effects model: τ(·) ≡ τ fixed
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State-level ATEs
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Characterizing effect heterogeneity

• High degree of heterogeneity between states

• What about heterogeneity driven by moderators?

• Variation in effect across time?
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Posterior summary for effect modification

• Interpret nonparametric function τ(·) via posterior
summarization

• Project τ(·) down onto a simpler (additive) structure:

τ(·) ≈ γ(xi, si, ti) = τ̄ +

47∑
k=1

bs · 1(si = k) +

5∑
j=1

h j(xi j) + h6(ti)

• Summary communicates treatment effect modification while
averaging over possible interactions in τ(·)
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averaging over possible interactions in τ(·)
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Additive summary
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Additive summary of effect moderating function τ( ⋅ )
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Diagnostics of linearity assumption
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Diagnostics of linearity assumption

Linear effects model:

y = µ(x) + τ(x) · z + ε

Subtracting out µ(x) gives:

y − µ(x) = τ(x) · z + ε
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Diagnostics of linearity assumption

y − µ(x) = τ(x) · z + ε

• Idea: Combine observations into J disjoint groups g j such
that τ̂(xi) ≈ τ̂(xi′) for i, i′ ∈ g j, so then

E[yi − µ̂(xi)] ≈ τ̄g j · zi for i ∈ g j

where τ̄g j = |g j|
−1 ∑

i∈g j
τ̂(xi)

• Then plot partial residuals r̂i ≡ yi − µ̂(xi) against zi to check for
linearity within each group
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Partial dose response curve
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≡

y i
−

µ̂(
x i

,s
i,t

i)
LOESS fit τ Overall ATE

Group
1
2

3
4

5
6

7
8

Effect of abortion on murder rate

72



saFAB updates Posterior summarization Causal inference under nested models Moderation of continuous treatments Conclusion

More analyses in the paper. . .

• Posterior summarization for subgroup identification

• Application to violent crime and property crime

• Simulation results for diagnostics

• ArXiv preprint: arxiv.org/abs/2007.09845
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Conclusion

I. saFAB: frequentist selection-adjusted confidence sets,
leverage Bayesian approach for shorter intervalsxiv

II. Posterior summarization: Bayesian model post-hoc
summaries for model interpretationxv

III. Valid Bayesian posteriors for treatment effects under nested
modelsxvi

IV. Nonparametric control function, posterior summarization for
interpreting heterogeneous treatment effectsxvii

xivUnder revision for Biometrika
xvTo appear in JCGS
xviSubmitting to JBES soon
xviiRecently submitted to JASA ACS
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Future endeavours

• Postdoctoral fellow at lab of Prof. Lauren Ancel Meyers,
UT-Austin Department of Integrative Biology

• Modeling spread of COVID-19 and other infectious diseases
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Contact

• Email: spencer.woody@utexas.edu

• Website: spencerwoody.github.io
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Extra slides...
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saFAB recap
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Quick recap: inverting a biased test

Construct confidence sets for θi only if yi ∈ S . Truncated likelihood:

fS (y; θ) = f (y; θ) · 1(y ∈ S )/
∫

S
f (y; θ)dy

Inverting unbiased test gives confidence set:

AS (θ0) = {y : F−1
S (α/2; θ0) ≤ y ≤ F−1

S (1 − α/2; θ0)}

CS (y) = {θ : y ∈ AS (θ)}

Prθ(θ ∈ CS (y) | y ∈ S ) = Prθ(y ∈ AS (θ)) = 1 − α

2
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Quick recap: inverting a biased test

Inverting unbiased test gives confidence set:

AS (θ0) = {y : F−1
S (α/2; θ0) ≤ y ≤ F−1

S (1 − α/2; θ0)}

CS (y) = {θ : y ∈ AS (θ)}

Invert biased test , choose quantiles in FS (·) according to
spending function w(θ) : R→ [0, 1]

AS
w(θ)(θ) = {y : F−1

S (αw(θ); θ) ≤ y ≤ F−1
S (αw(θ) + 1 − α; θ)}

CS
w(θ)(y) = {θ : y ∈ AS

w(θ)(θ)}

2
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Quick recap: inverting a biased test

• Choose optimal w(θ) such that confidence sets are as short
as possible on average under assumed prior π(θ)

• Define frequentist risk

R(θ; w) =

∫ ∫
1(y ∈ AS

w(θ̃)) fS (y; θ)dθ̃dy.

• Bayes loss is

L(π,w) =

∫
R(θ; w)π(θ)dθ = . . . =

∫
Pr(Y ∈ AS

w(θ̃))dθ̃

• Finding optimal spending function is a minimization problem
with objective function

w?(θ) = arg min
w∈[0,1]

H(w; θ)

H(w; θ) ≡ Pr(Y ∈ AS
w(θ))

= MS
[
F−1

S (αw + 1 − α; θ)
]
− MS

[
F−1

S (αw; θ)
]

3
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Nonparametric empirical Bayes saFAB procedure

• Calculating the optimal spending function depends on the
prior π(θ) through the marginal density MS

w?(θ) = arg min
w∈[0,1]

H(w; θ)

H(w; θ) = MS
[
F−1

S (αw + 1 − α; θ)
]
− MS

[
F−1

S (αw; θ)
]

• When the prior is unknown, we can use predictive recursionxviii

to form an estimate π̂(θ) from the observed data y1, . . . , yN

• This gives the estimated optimal spending function which
minimizes a surrogate objective function

ŵ?(θ) = arg min
w∈[0,1]

Ĥ(w; θ)

Ĥ(w; θ) = M̂S
[
F−1

S (αw + 1 − α; θ)
]
− M̂S

[
F−1

S (αw; θ)
]

xviiiNewton (2002); Tokdar et al. (2009)
4
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Convergence of empirical Bayes procedure

Ω0 =

{
w : min

w̃∈[0,1]
H(w̃) = H(w)

}
︸                                   ︷︷                                   ︸

Set of true minimizers

Ω̂ =

{
w : min

w̃∈[0,1]
Ĥ(w̃) = Ĥ(w)

}
︸                                 ︷︷                                 ︸

Set of estimated minimizers

Theorem: Main consistency result
Under general regularity conditions, the following holds:

(i) Convergence of estimated spending function to true optimal function:

Pr
 sup

ŵ?∈Ω̂
inf

w?∈Ω0

∣∣∣ŵ? − w?
∣∣∣ ≥ ε→ 0.

(ii) Convergence of objective function:

H(ŵ?)
a.s.
→ H(w?) for some ŵ? ∈ Ω̂,w? ∈ Ω0
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GP model for CA housing data
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Gaussian process model for CA housing data

(yi | f , σ2) = f (xi) + εi, εi ∼ N(0, σ2)

f ∼ GP(0, k(·, ·))

p(σ2) ∝ σ−2

k(xi, xi′) = τ2 · exp

− p∑
j=1

[xi j − xi′ j]2/v j

 +

p∑
j=1

a jxi jxi′ j
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Local linear summaries
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Local linear summaries

Characterize local behavior of f to answer the question:

How do the determinants of housing prices vary geographically?

Choose 3 metropolitan areas (MSA’s, defined by their counties) in
California from south, north, and central regions to compare:

• Greater Los Angeles (LA & Orange Counties)

• Fresno (Fresno County)

• Bay Area (San Francisco and San Mateo Counties)
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Local linear summaries

• Greater Los Angeles (LA & Orange Counties)

• Fresno (Fresno County)

• Bay Area (San Francisco and San Mateo Counties)

Summary of f at four levels of resolutions:

(i) Metropolitan area (compare across MSA’s)

(ii) County (compare across and within MSA’s)

(iii) Neighborhood (group of tracts; compare within a county)

(iv) Individual tract

10
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Local linear summaries

Create synthetic data X̃m for each region m by sampling data within
neighborhood of xm0

Linear summary for predictions made by model at points f (x̃mi)

11
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MSA-level local linear summaries

34°N

36°N

38°N

40°N

42°N

124°W 122°W 120°W 118°W 116°W 114°W

Metro area Fresno LA+OC SF+SM

Selected metropolitan areas in California
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MSA-level local linear summaries

●

●

●

●

●

●

●

●

●

●

●

●

Median_rooms POPULATION

(Intercept) Median_household_income

0.000 0.025 0.050 0.075 0.100 0.125 −0.2 −0.1 0.0 0.1

6 7 8 9 10 0.2 0.3 0.4 0.5 0.6

Fresno

LA+OC

SF+SM

Fresno

LA+OC

SF+SM

coefficient

Between−city heterogeneity
Local linear summaries of GP fit at metro area level

13



saFAB recap GP model for CA housing data Local linear summaries Calculating projected posterior treatment effects

Local linear summaries in San Francisco
Selected areas for summarization
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Local linear summaries in San Francisco
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Local linear summary diagnostics
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Calculating projected posterior treatment effects
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Projected posterior treatment effects

(I) Posterior for “full” model

(Y | Z, X) = τZ + Xβ + ε, ε ∼ N(0, σ2
ε )

• Define. . .

I concatenated data matrix W = [Z X]
I condensed coefficient vector ψ = [τ βᵀ]ᵀ

so outcome model becomes

Y = Wψ + ε, ε ∼ N(0, σ2
ε ).

• Obtain posterior for ψ

18
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Projected posterior treatment effects

(II) Inference under submodels

Consider nested subset of controls described by φ ∈ {0, 1}p, |φ| < p

• Restricted covariate matrix Xφ = {X j} j∈φ, coefficient vector βφ

• Wφ = [Z Xφ] and ψφ = [τ βφ]

• Goal: Compare model specifications

M0 : Y = Wψ + ε

Mφ : Y = Wφψφ + ε

19
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Projected posterior treatment effects

• Goal: Compare model specifications

M0 : Y = Wψ + ε

Mφ : Y = Wφψφ + ε

• Projected posterior for τ under the φ subset of controls:

ψφ = (WᵀφWφ)−1WᵀφWψ

20
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Projected posterior treatment effects

• Goal: Compare model specifications

M0 : Y = Wψ + ε

Mφ : Y = Wφψφ + ε

• Projected posterior for τ under the φ subset of controls:

ψ[k]
φ = (WᵀφWφ)−1WᵀφWψ[k], ψ[k] ∼ p(ψ | y)

(using Monte Carlo draws from posterior,

take first element of ψφ)
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Toy example

Generate data from

(Z | X) = Xγ + ν, ν ∼ N(0, 1)

(Y | Z, X) = τZ + Xβ + ε, ε ∼ N(0, 1)

with X ∼ N(0, I)

γ =
[
1.0 1.0 0.2 0.2 1.0 0.0

]ᵀ
β =

[
1.5 0.5 1.5 0.5 0.0 0.0

]ᵀ
τ = 0.1.

Determinant of... X1 X2 X3 X4 X5 X6

Exposure Strong Strong Weak Weak Strong None
Outcome Strong Weak Strong Weak None None

Variable type Strong conf. Weak conf. Weak conf. Weaker conf. Instrument Noise

21
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Toy example
Determinant of... X1 X2 X3 X4 X5 X6

Exposure Strong Strong Weak Weak Strong None
Outcome Strong Weak Strong Weak None None

Variable type Strong conf. Weak conf. Weak conf. Weaker conf. Instrument Noise
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Stepwise procedure
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Stepwise procedure

• Can remove control terms in a backward stepwise manner

• Remove one control at a time in a way that minimizes change
in posterior mean for τ

• This ranks the control terms according to apparent
confoundingness

24
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Stepwise procedure: simulation example

We generate n = 1000 observations from the model

Y = τZ + β1X1 + . . . + β14X14 + εi, εi ∼ N(0, 1)

τ = β1 = . . . = β14 = 0.1

• X1, . . . , X7: confounders

• X8, . . . , X14: prognostic variables

• X15, . . . , X25: noise variables
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