
ESTIMATING HETEROGENEOUS EFFECTS OF
CONTINUOUS EXPOSURES WITH BART

Spencer Woody1 Carlos M. Carvalho2,1 P. Richard Hahn3

Jared S. Murray2,1

1Department of Statistics and Data Sciences, UT-Austin

2Department of Information, Risk, and Operations Management, UT-Austin

3School of Mathematical and Statistical Sciences, ASU

JSM 2020

August 6, 2020



Introduction Methods Application to D&L data Conclusion

Introduction: Abortion-crime hypothesis

• Donohue and Levitt (2001): legalization of abortion in the US
in the 1970s helped lead to a dramatic reduction of crime in
the 1980s and 1990s.

• Claim a large negative effect after controlling for
socioeconomic variables & state- and year-level fixed effects
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Control variables

Covariate Description

police log-police employment per capita

prison log-prisoner population per capita

gunlaw indicator variable for presence of concealed
weapons law

unemployment state unemployment rate

income state log-income per capita

poverty state poverty rate

afdc15 generosity to Aid to Families with Dependent
Children (AFDC), lagged by 15 years

beer beer consumption per capita
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Sensitivity to model specification

• Subsequent studies criticized the functional form of controls

• Belloni et al. (2014) and Hahn et al. (2018) add interactions:

I state-level controls × year
I state-level controls × year2

I state dummies × year
I state dummies × year2

After adding these, they claim the causal effect disappears

• Retrospective study by Donohue and Levitt (2019) found that
their predictions from 2001 held up over the next 17 years

• Woody, Carvalho, and Murray (2020b): adding quadratic
trends is the tipping point in negating the causal effect
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Our contribution

Present a model which:

(i) Does not require a priori parametric specification for controls

(ii) Identifies effect modification by pre-specified moderators

I Detecting unanticipated effect heterogeneity can generate
novel hypotheses regarding mechanism, e.g. social support

(iii) Gives interpretable summaries of effect modification using
method of posterior summarization
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Methods
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Setup

• Goal: estimate causal effect of continuous treatment /
exposure / ∈ Z ⊆ R on some outcome .

• Use potential outcome framework*:

Compare . (/ = I) vs. . (/ = I′) for I, I′ ∈ Z

*see, e.g., Imbens and Rubin (2015)
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Identifying assumptions

(i) Consistency†

/ = I implies . = . (I)

(ii) Weak unconfoundedness‡

. (I) ⊥⊥ / | - for all I ∈ Z

(iii) Positivity§

c(I | G) > 0 for all I ∈ Z

†Rubin (1978)
‡Imbens (2000)
§Generalized propensity score, Imbens (2000); Hirano and Imbens (2004)
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Causal estimands

• Finite difference average treatment effect (ATE):

ATEI′,I = E[. (I′) − . (I)]

• Dose-response curve:

q(I) = E[. (I)]

• Finite difference conditional average treatment effect (CATE):

CATEI′,I (G) = E[. (I′) − . (I) | - = G]
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Proposed semiparametric model

H = `(GC) + g(GM) · I + Y, Y ∼ N(0, f2)

• `(·) is the control function
GC is vector of the control variables

• g(·) is the exposure moderating function
GM is a vector of moderators.

• Main parametric assumption:
H is linear in I with slope determined by g(GM)

The conditional average treatment effect (CATE) is:

CATEI′,I (G) = g(GM) · (I′ − I)
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Proposed semiparametric model

H = `(GC) + g(GM) · I + Y, Y ∼ N(0, f2)

• `(·), g(·) modeled using Bayesian additive regression trees¶

• Allow for interactions and nonlinearities (no need for a priori
parametric specification)

• Prior based on Hahn, Murray, and Carvalho (2020), regularize
g(·) more heavily (shallower trees)

¶Chipman, George, and McCulloch (2010); review: Hill, Linero, and Murray (2020)
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Application to D&L data
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The data

• Outcome: HBC is the murder rate in state B for year C

• Exposure: IBC is the “effective abortion rate” (D&L, 2001)

I Lags and weights abortion rates from previous years

• 48 contiguous US states, years 1985–1997 (# = 624)

• Denote observations by 8 = 1, . . . , #
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The data

Covariate Description Used as control? Used as moderator?

state categorical variable for state (con-
tiguous US states; 48 levels)

Yes Yes

year numeric value for year (1985–1997,
inclusive)

Yes Yes

police log-police employment per capita Yes No

prison log-prisoner population per capita Yes No

gunlaw indicator variable for presence of
concealed weapons law

Yes No

unemployment state unemployment rate Yes Yes

income state log-income per capita Yes Yes

poverty state poverty rate Yes Yes

afdc15 generosity to Aid to Families with De-
pendent Children (AFDC), lagged by
15 years

Yes Yes

beer beer consumption per capita Yes Yes
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Model definition

H = `(GC , B, C) + g(GM , B, C) · I + Y, Y ∼ N(0, f2)

Comparison with Donohue and Levitt (2001); Belloni et al. (2014);
Hahn et al. (2018); and others:

• Commonality: Assume linearity of H in I

• Two departures:

(i) No strict a priori parametric specification for controls

(ii) Effect heterogeneity through varying slope of treatment effect
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ATE estimates
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• ATE = ḡ = #−1
∑#

8=1 g(G8)
• Homogeneous effects model: g(·) ≡ 1

• Donahue and Levitt (2019), years 1998-2014: ATE = –0.154
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State-level ATEs

-0.5

0.0

0.5

TX DE GA MI RI KY MA SC WV OR FL OH CO NM VA UT SD MO NH WY TN NE IN ND VT OK NC AL MS IA WA ID AR NJ AZ CT CA PA LA MN NV WI IL ME NY MD MT KS

State

S
ta

te
-l

e
ve

l a
ve

ra
g

e
 t

re
a

tm
e

n
t 

e
ff

e
ct

Overall average treatment effect

Effect of abortion on murder rate

17



Introduction Methods Application to D&L data Conclusion

Characterizing effect heterogeneity

• High degree of heterogeneity between states

• What about heterogeneity driven by moderators?

• Variation in effect across time?
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Posterior summary for effect modification

• g(·) is nonparametric function, typically difficult to interpret

• We can interpret model through posterior summarization||

• Project g(·) down onto a simpler (additive) structure:

g(·) ≈ W(G8 , B8 , C8) = ḡ +
47∑
:=1

1B · 1(B8 = :) +
5∑
9=1

ℎ 9 (G8 9) + ℎ6(C8)

• Summary communicates treatment effect modification while
averaging over possible interactions in g(·)

||Woody, Carvalho, and Murray (2020a), in press at JCGS
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Additive summary
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Conclusion
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Conclusion

• Strong evidence supporting negative effect of abortion on
murder

• Treatment effect heterogeneity

I Suggestive evidence that afdc15 mitigates the effect

I There remains a high degree of unexplained variation in the
effect across states

• Reduce replicator degrees of freedom** which can give bias
toward false-negatives

• Demonstrate use of modern tools for applied data analyses
which are powerful , robust , and interpretable

**Bryan et al., PNAS (2019)
22
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More analyses in the paper. . .

• Posterior summarization for subgroup identification

• Diagnostics of linearity assumption

• Simulation results

• Application to violent crime and property crime

• ArXiv preprint: arxiv.org/abs/2007.09845
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Contact

• Session #479 attendee questions:

Thu Aug 6 at 10:00 AM – 2:00 PM EDT

• Slides: spencerwoody.github.io/talks

• ArXiv preprint: arxiv.org/abs/2007.09845

• Email: spencer.woody@utexas.edu
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Diagnostics of linearity assumption

Extra slides...
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Effective abortion rate

• Exposure: IBC is the effective abortion rate, e.g.

I 30% of murders in year C committed by people age 18
I 70% by age 19, then
I EARC = 0.3 × abortion-rateC−18 + 0.7 × abortion-rateC−19
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Diagnostics of linearity assumption
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Diagnostics of linearity assumption

Linear effects model:

H = `(G) + g(G) · I + Y

Subtracting out `(G) gives:

H − `(G) = g(G) · I + Y
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Diagnostics of linearity assumption

H − `(G) = g(G) · I + Y

• Idea: Combine observations into � disjoint groups 6 9 such
that ĝ(G8) ≈ ĝ(G8′) for 8, 8′ ∈ 6 9 , so then

E[H8 − ˆ̀(G8)] ≈ ḡ6 9
· I8 for 8 ∈ 6 9

where ḡ6 9
= |6 9 |−1

∑
8∈6 9

ĝ(G8)

• Then plot partial residuals Â8 ≡ H8 − ˆ̀(G8) against I8 to check
for linearity within each group
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Partial dose response curve
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